Climate and recruitment success in *Quercus lobata* (valley oak)

Blair McLaughlin

Erika Zavaleta

University of California at Santa Cruz

California Climate Change Symposium, September 10, 2009

* Lose 54% of current range

* Local factors will mediate shift

Kueppers et al. 2005

In most previously surveyed stands valley oak seedlings did not survive to the sapling stage

(Zavaleta et al. 2007)

Valley Oak Surveys (1976-1987) _{N=11}

= Sites without sapling recruitment= Sites with sapling recruitment

Individual vital rates

Local interactions

Resurvey study on previously surveyed valley oak stands

Change in recruitment status over time n=11

Is recruitment lower in contracting areas of the range?

Dendro Analysis

Multiple recruitment dates within sites Cohorts not synchronized across sites

Conclusions: Recruitment Status?

- More recruitment in recent surveys than in 1976-1987 surveys
- Saplings highly clustered around water
- Climate may not be primary influence on sapling recruitment

Where are Valley Oaks Recruiting?

- What environmental factors are associated with successful recruitment to the sapling stage?
- How might drivers shift across a climatic gradient?

Meta-Analysis of Valley Oak Planting Experiments N=26

Herbivory -

Herb Competition -

Watering +

The effect of herbivores increases with precipitation

The effect of weeding decreases with precipitation

Climate shifts importance of biological factors

How do herbivory and herb competition interact with climate and grazing?

 >250 inquiries with land managers, ranchers, and conservationists to locate recruiting sites

Found 25 recruiting sites

	Site	Savanna	Woodland
All Within- Site Analysis	15	11	4
Grazed	7	3	4
Un-grazed	8	8	0

Design

Saplings

No Saplings

6 m diameter plot

- Located randomly within recruiting and non-recruiting areas
- Controlled for valley oak adult cover

Design

- Located randomly within recruiting and non-recruiting areas
- Controlled for valley oak adult cover

<u>Sampled</u>

- Herbaceous Cover
- Small Mammal Activity
 Thomomys spp.
 Spermophilus beecheyi
- Soil Moisture

Design

Saplings

No Saplings

6 m diameter plot

- Located randomly within recruiting and non-recruiting areas
- Controlled for valley oak adult cover

Sampled

- Herbaceous Cover
- Small Mammal Activity Thomomys spp., Spermophilus beecheyi
- Soil Moisture

Design

Mean Recruiting - Mean Non-Recruiting = Data Point

- Located randomly within recruiting and non-recruiting areas
- Controlled for valley oak adult cover

Sampled

- Herbaceous Cover
- Small Mammal Activity
- Soil Moisture

Design

Mean Recruiting - Mean Non-Recruiting = Data Point

Recruiting areas associated with lower ground squirrel and gopher activity than non-recruiting areas

Precipitation alters herbivore effect

Herbivore activity increases with precipitation

Rainfall alters competition effect in savanna

Rainfall effect on competition depends on grazing regime

Conclusions: Effects of competition and herbivores vary along a rainfall gradient

Valley Oaks and Climate Change

- Constriction around water sources
- Strongly mediated by local ecological factors

The Zavaleta Lab

Ingrid Parker, Greg Gilbert,
Margaret Fitzsimmons, Kevin Rice,
Michael Loik

Central Coast Rangelands Coalition

CA Native Plants Society

Oak Woodland Conservation
Working Group

Brian Emerson, Corinne Morozumi
Daniella Reagan, Caleb Caswell-Levy
Arthur Platel, Tessa Dahlen, Elise Hariton,
Brandy Saffel, Dustin Mulvaney

CA Energy Commission (PIER);
National Science Foundation;
Community Forestry and
Environmental Research
Partnerships; STEPS; California
Native Plants Society; UC Natural
Reserve System: Mathias Grant;
Marilyn C. Davis Scholarship
Contact:

Blair McLaughlin, bcmclaug@ucsc.edu

Precipitation alters herbivore effect

Precipitation alters herbivore effect

More in Recruiting Plots

More in Non-Recruiting Plots

RC

Meta-Analysis of Valley Oak Planting Experiments

As precipitation increases, ground squirrel activity in non-recruiting areas becomes higher than in recruiting areas

Mycorrhizae Soil N Deposition Fire Pathogens Shrub/Canopy Insects Cover **Annual Grasses** Deer Light Competition Ground squirrels **Herbivory** Gophers **Nutrients** Disturbance Drought Cows **Stress** Feral Pigs Climate Microclimates - Rainfall - Shade - Temperature - Streams - Slope

Ground water

- Aspect

